Answer:
Option D
Explanation:
We have,
$c^{2}x^{2}-c(a+b)x+ab=0$
$\Rightarrow$ $c^{2}x^{2}-cax-cbx+ab=0$
$\Rightarrow$ $cx(cx-a)-b(cx-a)=0$
$\Rightarrow$ (cx-a)(cx-b)=0
$\Rightarrow$ cx-a=0 or cx-b=0
$\Rightarrow$ $x=\frac{a}{c}$ and x=$\frac{b}{c}$
As, sin A and sin B are roots of the given equation
Let $\sin A= \frac{a}{c}$ and $\sin B =\frac{b}{c}$
$\Rightarrow$ $c= \frac{a}{\sin A} $ and c=$\frac{b}{\sin B}$
$\Rightarrow$ $\frac{a}{\sin A}=\frac{b}{\sin B}=c$ ...........(i)
Using sine law, $\frac{a}{\sin A}$=$\frac{b}{\sin B}$=$\frac{c}{\sin C}$ .............(ii)
So, $\frac{c}{\sin c}=c $[From eqs.(i) and (ii) ]
$\Rightarrow$ $\sin c= \frac{c}{c}$
$\Rightarrow$ $\ sin C=1$ [$\because \sin \frac{\pi}{2}=1$]
$\Rightarrow$ $\angle C=\frac{\pi}{2}$
$\sin A= \frac{a}{c}$ and $\cos A= \frac{b}{c}$
$\therefore$ $\sin A+\cos A= \frac{a}{c}+\frac{b}{c}= \frac{a+b}{c}$