<<456789>>
31.

From a certain population, the probability of choosing a colour blind man is $\frac{1}{20}$ and that of a colour blind woman is  $\frac{1}{10}$ . If a randomly chosen person is found to be colour blind, then the probability that a person is a man is 


A) $\frac{2}{9}$

B) $\frac{2}{3}$

C) $\frac{1}{3}$

D) $\frac{1}{9}$



32.

 Two distributions A and B have the same mean. If their  coefficients of variation are 6 and 2 respectively  and $\sigma _{A}, \sigma_{B}$ are their standard deviations, then


A) $\sigma_{A}=3 \sigma_{B}$

B) $3\sigma_{A}=\sigma_{B}$

C) $\sigma_{A}=2 \sigma_{B}$

D) $2 \sigma_{A}= \sigma_{B}$



33.

The equation of the  plane passing through the points with position vectors $ A(2\hat{i}+6\hat{j}-6\hat{k})$, $B(-3\hat{i}+10\hat{j}-9\hat{k})$  and $ C(-5\hat{i}-6\hat{k})$  is 


A) $r.(2\hat{i}-\hat{j}-2\hat{k})=2$

B) $r.(\hat{i}-2\hat{j}-\hat{k})=1$

C) $r. (2\hat{i}+\hat{j}-2\hat{k})=3$

D) $r. (\hat{i}+2\hat{j}-2\hat{k})=3$



34.

In a $\triangle $ ABC, sin A and sin B satisfy   $c^{2}x^{2}-c(a+b)x+ab=0$ , then 


A) the triangle is acute angled

B) the triangle is obtuse angled

C) $\sin C= \frac{\sqrt{3}}{2}$

D) $\sin A+ \cos A= \frac{a+b}{c}$



35.

If $\alpha$  is a root of $z^{2}+z+1=0$  , then 

$\left(\alpha^{2014}+\frac{1}{\alpha^{2014}}\right)+\left(\alpha^{2015}+\frac{1}{\alpha^{2015}}\right)^{2}$

$+\left(\alpha^{2016}+\frac{1}{\alpha^{2016}}\right)^{3}+\left(\alpha^{2017}+\frac{1}{\alpha^{2017}}\right)^{4}+\left(\alpha^{2018}+\frac{1}{\alpha^{2018}}\right)^{5}$=


A) 8

B) 5

C) 7

D) -5



<<456789>>